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Effect of Interfacial Chemical Bonding on the
Strength of Adhesion of Glass-Polybutadiene Joints

Summary

A new example of a positive effect of interfacial chemical
bonding on the strength of adhesive bonds is reported. The g
chemical bond was formed between a p-bromomethylphenylpoly-
siloxane coated glass slide and a liquid dicarboxyterminated
polybutadiene which was subsequently bonded to an elastomeric
polybutadiene by crosslinking with dicumylperoxide. Peel tests
at 180° led to cohesive failure in the elasfomer layer for two
different proportions of p-bromomethylphenyl groups on the
glass slides, whereas uncoated slides and slides coated with
an inert polysiloxane layer, g-tolylpolysiloxane, showed inter-
facial failure. Further confirmation of interfacial bonding
was obtained from SEM studies. When peel tests resulted in
cohesive failure it was found possible to distinguish between
different degrees of interfacial bonding by the different

times reguired for failure at the interface on swelling the

elastomer layer with pentane.




Introduction

The importance of interfacial bonding on the strength of
an adhesive joint is still a subject of controversy (1-3).
Some investigators believe that covalent bonding at an inter-
face is not necessary to form a strong joint. Others argue
that adhesion is improved by forming chemical bonds between
adherends. Ahagon and Gent (4) have shown that when the
presence of chemical bonds at an interface can be inferred from
the method of preparation of the joint, then a corresponding
increase in the work of adhesion is observed. 1In their work
bonding to the s;bstrate, a glass surface treated with varying
amounts of vinyltriethoxysilane, and crosslinking of the ad-
hesive, polybutadiene, were carried out simultaneously during
a peroxide cure of the adhesive. It was assumed that the
bonding to vinyl groups on the substrate was quantitative or
at least proportional to the number of groups present. No
attempt to measure the number of vinyl groups was made, although
earlier work by Hsu and Gent had shown that the proposed reac-
tions should occur (5).

We have now developed a second system that shows a sig-
nificant effect of interfacial chemical bonding on adhesive
strength and that also allows us to vary the number of inter-

facial chemical bonds and the degree of crosslinking of the




elastomer in separate steps. In designing this system we have
used well-established chemistry developed for use in solid phase
peptide syntheses with glass beads as the stationary phase (6,7).
The following sequence of reactions is first carried out on a

clean glass slide:

:: i-OH 1l
7 + Cl-Si- @—CHZX >
N |
— Si-0OH Cl
7
Glass surface X = Br or H

c1
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Dgi-0-5i- @—CHZ X
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Thus a hard film consisting of a three dimensional function-
alized polysiloxane network is formed on the surface of the
glass slides. This system is particularly attractive because
it has been shown that the linkage between the glass slide and
the bonded organic layer is hydrolytically stable (6,7). These
prepared slides with varying amounts of -CH; and -CH, Br groups
are then treated with a liquid polybutadiene terminated at
both ends with carboxylic acid groups and finally the liquid
polybutadiene is bonded to an elastomeric polybutadiene over-
layer during a curing reaction. The strengths of adhesion of
these model joints were measured in 180° peel tests and cor-
related with degonding times in pentane and micrographs taken
with a scanning electron microscope.

Experimental

Materials. p-Tolyltrichlorosilane (CH;—@-—SiCl,) was pre-
pared according to the method of Chvalovsky and Bazant (8).
p-Bromomethylphenyltrichlorosilane (BrCHZ-@——SiC13) was

made by Grohmann's procedure (6). The liquid dicarboxyterminated
polybutadiene was B. F. Goodrich's Hycar CTB (2000X156) , En 4130,

functionality 1.9, cis/trans/vinyl (%): 20.5/54.9/24.6. The
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elastomeric polybutadiene was Firestone's Diene 35, an anionic

polybutadiene of ﬁn ~150,000 and cis/trans/vinyl ( %): 36/54/10.

Dicumyl peroxide (recrystallized, Hercules, Inc.) was used as

a curing agent. Reagent grade benzene (Mallinckrodt Chemical
Works) was dried over lithium aluminum hydride and distilled.
Other solvents were reagent grade and were used as received.
The glass slides were cleaned by standing in freshly prepared
chromic acid solution for several days and then rinsing several
times with distilled water followed by drying in a vacuum oven
at 120°C for six days.

Polysiloxane Coating of Glass Slides. The glass slides were

treated for 4 da&s at room temperature with one of three dif-
ferent silane solutions in dry benzene: A, 10g of g—bromo—
methylphenyltrichlorosilane in 250ml of dry benzene; B, 1l0g

of g-tolyltrichlorosilane in 250ml of dry benzene; or C, 5g

of p-bromomethylphenyltrichlorosilane and 5g of g-tolyltrichloro-
silane in 250ml of dry benzene. They were removed and placed in
Soxhlet extractors and washed with refluxing dry benzene for

24 hours in order to remove any of the silane compounds not

chemically bonded to the slides. The glass slides were then
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placed in a solution of benzene, ethanol and water (50/45/5
by volume) for four hours to hydrolize the remaining Si-Cl
bonds and then heated in a vacuum oven at 115°C for 24 hours
to polymerize the silane compounds on the surface of the glass.

Reaction With Liquid Polybutadiene. Three clean glass slides

which had not been treated with any of the silane solutions,
three slides treated with A, three slides treated with B, and
three slides treated with C were suspended in a reaction

kett n accord with the usual procedure for coupling amino
ac chloromethylated supports a solution of 30g of di-
carboxyterminated liquid polybutadiene in 750ml of ethyl acetate
and 5ml triethylamine were added (9). The kettle was heated
to 60-70°C. After four days, the solution was removed and

the glass slides were washed twice with ethyl acetate and once
with methylene chloride in order to remove all of the liquid
rubber which was not chemically bonded to the glass slides.
The coated glass slides were then air dried. Two of each

type of slide were used for adhesion testing and the third

was examined by scanning electron microscopy.

Application of Elastomer Layer. Dicumyl peroxide (0.1%)

was mixed with the elastomeric polybutadiene on an open mill.
Before bonding the elastomer was pressed into a thin layer

on a sheet of finely-woven cotton cloth. The cloth-backed

e~
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6
layer was then pressed against the prepared glass slide for
2.5 hrs. at 150°C in a press to cure the elastomer and bond
the two polybutadienes. The thickness of the elastomer inter-
layer in the resulting cloth-elastomer-glass sandwich was
~ 0.7mm. Peeling experiments were carried out on strips of
cloth-backed elastomer layer after trimming them to a uniform
width on the glass of 2 cm.

Measurement of Work of Adhesion, W. The cloth-backed elastomer

layer was peeled off a short distance, bent back through 180°,

and then stripped off at constant rate. Work of adhesion W

per unit area of interface was calculated from the time-average

of the peel force P per unit width of the detaching layer (4):
W = 2P

Scanning Electron Microscopy. Slides were gold coated and

examined with a JSM-V3 Scanning Electron Microscope.

Results and Discussion

The results of the 180° peel tests of the bonds prepared
as described above are given in Table I. As would be expected
if chemical bonding plays a role in improving the strength of
adhesion the g-tolylpolysiloxane coated slides and the clean

glass slides led to low work of adhesion W since chemical

- e S— = ‘




7
bonding with the dicarboxyterminated polybutadiene is not
expected in either case. The slides with the B—tolylpoly-
siloxane coating gave a lower W than the uncoated slides. This
is consistent with the known release agent characteristics of
silane compounds and indicates that there is some intrinsic
attraction between clean glass surfaces and polybutadiene that
is reduced by the siloxane coating. Similar results were ob-
tained by Ahagon and Gent (4); higher values of W for clean
glass compared to methyltriethoxysilane treated glass were
found and can be accounted for in the same way. Wong has
also noted a strong attraction between polybutadiene and
clean glass (10).

The existence of strong attraction between the dicarboxy-
terminated polybutadiene and clean glass was confirmed by the
scanning electron microscope study. (See Figure 1.). Uﬁ—
coated glass slides were covered by a significantly larger
amount of debris, presumably rubber, after treatment with the
dicarboxyterminated polybutadiene than were slides coated
with E-tolylpolysiloxane. This attraction could be of the
same nature as that noted by Ahagon and Wong but covalent

bonding might also have occurred under the reaction conditions used.
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In contrast,when some degree of interfacial chemical
bonding was expected, as with the 50/50 E—bromomethylphenyl-
polysiloxanc/g—tolylpolysiloxane coated slides and with
g—bromomethylphenylpolysiloxane coated slides, a much larger
value of W that resulted in cohesive failure in the poly-
butadiene layer was observed. As shown in Figure 2 the
scanning electronmicrographs of the siloxane coated slides
before and after treatment with the dicarboxyterminated
rubber also revealed a definite coating on the glas.:. Micro-
graphs of the rubber treated slides showed evidence of rubber
particles in addition.

A further difference between the slides where chemical
bonding is expected and those where it is not was found in
the time required for failure of the adhesive bond by swelling
in pentane of the polybutadiene layer (See Table I). When
chemical bonding could not occur the bond failed in a few
minutes. When chemical bonding was possible much longer
times were required. The rubber-glass bhond on the slide
coated with the 50/50 g-bromomethylphenylpolysiloxane[g—tolyl—
polysiloxane failed after several hours in pentane. The
corresponding bond on the glass slide coated with P-bromo-

methylphenylsiloxane did not fail even after being submerged
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in pentane for three days. This indicates, as would be ex-
pected, that there is a higher density of bonds in the case
of the glass slides coated with the g—bromomethylphenylpoly—
siloxane than in the case of those coated with the 50/50
g—bromomethylphenylpolysiloxane/g—tolylpolysiloxane. Time to
debond the elastomer from the substrate by swelling in pentane
seems to be a very sensitive criterion for determining the
existence and relative density of chemical bonds.
Conclusion

A new example of a positive effect of interfacial chemical
bonding on the strength of adhesive bonds is reported. The
chemical bond was formed between a B—bromomethylphenylpoly—
siloxane coated glass slide and a liquid dicarboxyterminated
polybutadiene which was subsequently bonded to an elastomeric
polybutadiene by crosslinking with dicumyl peroxide. Peel tests
at 180° led to cohesive failure in the elastomer layer for two
different contents of g—bromomethylphenyl groups. The two
levels of functionalization could be distinguished by the

time necessary for failure of the adhesive bond by swelling in

pentane. Peel tests of similarly treated uncoated slides
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and p-tolylpolysiloxane coated slides led to interfacial
failure. Further confirmation of the existence of the coat-
ings was obtained from scanning =lectronmicroscope studies.
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Table I
Effect of p-Bromomethylphenylpolysiloxane and p-Tolylpolysiloxane

Coatings on Work of Adhesion Between Dicarboxyterminated
Polybutadiene and Glass and on Time for Bond Failure in Pentane

% of silane in Coating Solution

Time for Bond

-S i=(Q~CH, -5 i—(Q)—CH, Br w(J3/m?)® Failure in Pentane(hrs)
0 0 34(1) ~0.08
100 0 20(1) ~0.08
50 50 450(C) ~3
0 100 470(C) > T2

®petermined in a 180° peel test with 0.5 cm per min crosshead speed
and 0.1% dicumyl peroxide cure of the polybutadiene. I = inter-
facial failure. C = cohesive failure of the elastomer.



COATED UNCOATED

Figure 1: Comparison of scanning electronmicrographs of un- |
coated glass slide and p-tolylpolysiloxane coated i
glass slide after treatment of each with dicarboxy-

'
. : 4
terminated polybutadiene. ~ x 10,000.




BEFORE AFTER

Figure 2Z:

Comparison of scanning electronmicrographs of 50/50
p-bromomethylphenylpolysiloxane/p-tolylpolysiloxane

coated slides before and after treatment with di-

carboxyterminated polybutadiene. ~ x 10,000.
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